
The XICOOL Preprocessor for ICOOL Input Files

Steve Bracker
s_bracker@hotmail .com

Version 1.0 March 3, 2001
Version 1.1 March 12, 2001 (Mucool Note #0196)

Introduction

More than one person has noted [1] that managing the input files for ICOOL and other similar programs
can be quite vexing. Simulation programs tend to be used to "play" with apparatus configurations, and it is
not unusual for one person to generate dozens or hundreds of runs over a period of months, at least a few of
which may be of more than transient value. Simulation results presented to colleagues lose most of their
value if there isn't some concise way to report exactly what apparatus configuration was actually being
studied. Often enough, a line of development given up as unpromising is later reinvigorated by new
thinking, and it is necessary to go back and resurrect work dropped weeks or months ago.

What can be done to help make ICOOL input files easier to generate, to document, and to revive when
needed? Three things come immediately to mind:

1. ICOOL is very limited in its abil ity to support user comments. Many physicists are none too dili gent
about commenting their work even when it is easy to do, but ICOOL's data format makes it almost
impossible. An ICOOL preprocessor might, as a beginning, provide a format for commentary, and strip
comments and blank lines before submitting the input to ICOOL.

2. ICOOL control files are often pages and pages of highly repetitive listings of apparatus components.
Many times these components are identical, or trivial variants of one another, which repeat dozens or
hundreds of times. Apparatus is often naturally structured into hierarchical subsets: each A contains
several similar Bs; each B contains several similar Cs An obvious way to deal with such situations is
to provide a single place to define a piece of apparatus, with a few parameters describing the variations, and
a mechanism -- basically multiple levels of parameterized text macros -- to expand the (compact, well-
commented) definition into the control file wherever it may be required.

3. ICOOL simulations often have many control files -- the main file (for001.dat) , and several auxili ary
files which specify magnetic fields, cavity phases, etc. All of these files are crucial to defining the
apparatus, and to "save a configuration" it is necessary to save all the files and the fact of their association.
Although there are several ways to accomplish this, by far the easiest is to have all the information appear
in one file, and to use a preprocessor to extract segments of the information and write all the necessary
control files.

The Basics

File preparation for a simulation begins by creating (with your favorite text editor) a single file, compact
and well commented. Expansion of the file removes the commentary, expands the concise description into
the much more verbose format required by ICOOL, and generates all of the required control files. To
preserve an apparatus configuration, you need only save a single self-documenting file -- the XICOOL
input file.

On a Unix machine, a single shell command will produce a list of all such files -- name, date, and the first
few lines which (hopefully) summarize the apparatus configuration. This makes it easy to prepare a
"catalog" of simulation runs.

The user will usuall y never have to look at the ICOOL-format control files, any more than he now looks at
for007.dat, the apparatus description in ICOOL internal format, but the files are available if you wish to
inspect them before starting ICOOL. [2]

Once the input file is prepared -- let's imagine that it is called ring2d for version 2d of the cooling ring --
XICOOL is used to prepare the input files for ICOOL. In Unix/Linux, a single command does the job:
xicool ring2d. There is no need to specify the names of output files; that information is included in the
input file ring2d.

As XICOOL runs, it prepares a diagnostic file. Usually, there is no need to look at the diagnostic file, but if
there are problems in the XICOOL input file, the diagnostic file can be a valuable aid to finding them. The
diagnostic file is named xicool.dia, and is an ordinary text file that can be examined with more, a text
editor, a printout, etc.

In summary:

Input: ring2d (or whatever)
Output: for001.dat, for030.dat, for031.dat etc. -- the ICOOL input files
Output: xicool.dia (the XICOOL diagnostic file)
Run command: xicool ring2d

This Document . . .

This document is divided into two main sections. In the first, I describe the application of XICOOL to a
real problem -- a first-order simulation of the Balbekov Cooling Ring. It's often easier to learn this kind of
program by example than by formal description. However, the second section of the document does give a
somewhat more formal description of the input formats. As you will see, there isn't really very much to
XICOOL; someone famili ar with ICOOL and some specific apparatus to be simulated can probably learn
XICOOL in less than an hour.

References and Pointers

V. Balbekov, Using of a Ring Cooler for MUCOOL Experiment, December 5, 2000

V. Balbekov, Ring Cooler Update, January 29, 2001, Mucool Note 0189

Willi am F. Fawley, Quick User Manual for the NIME Pre-Processor, February 12, 2001,
http://www.cap.bnl.gov/numu/software/nime.html

Fortran (g77) source code for XICOOL: linuxfarm1.phy.olemiss.edu/~opticool/utili ty/xicool.for
Linux command to compile and link XICOOL: g77 -o xicool xicool.for

Example XICOOL input file: linuxfarm1.phy.olemiss.edu/~opticool/utili ty/ring
Linux command to run xicool example: xicool ring

My e-mail address: s_bracker@hotmail .com

A "Real" Problem: Setting Up the Balbekov Cooling Ring for ICOOL

See Ring Cooler Update (V. Balbekov, January 29, 2001). For now, we ignore the need for injection and
extraction. (I think it's useful to describe XICOOL on something like a real problem, but please remember
that this is a software writeup, not physics!)

We begin by defining the entire short straight section as a cell containing five regions -- three vacuum drift
spaces and 2 wedges. There are two parameters to SSS: the file number within which the cell's magnetic
field is defined (2 choices) and the azimuthal angle of the wedges (2 choices)

Both the drift spaces and the wedges are to be defined within lower level macros. Each has a single
parameter; SSS drift spaces may be of various lengths, and SSS wedges may have various azimuthal
orientations.

Note that WedgeAngle, a parameter of SSS, is passed through to SSS_Wedge, whereas FieldFile is
expanded within SSS. Blank lines and comment lines (! in column 1) are stripped during XICOOL
processing. The definition of SSS contains many lower-level macro invocations.

! SHORT STRAIGHT SECTION
! FieldFile: file number of magnetic field specification (31 or 33)
! WedgeAngle: azimuthal angle of the wedge in degrees (235 or 315)
!
! Example: \SSS 33 315.

\Define SSS FieldFile WedgeAngle

! The Short Straight Section is an ICOOL cell
CELL

! Cell repeat count = 1
1

! Cell field flip flag = false (don't care)
F

! Cell field type
BLOCK
! Field Model, File# of field definition file
 2 %FieldFile 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

! The first region of the cell is a vacuum drift space, dipole to first wedge
\SSS_Drift 1.23

! The second region of the cell is a lithium hydride wedge
\SSS_Wedge %WedgeAngle

! The third region of the cell is a vacuum drift space, between wedges
\SSS_Drift 2.71

! The fourth region of the cell is the second lithium hydride wedge
\SSS_Wedge %WedgeAngle

! The fifth and last region of the cell is a vacuum drift space, second wedge to dipole
\SSS_Drift 1.23

\End

Next, we must define the drift space and the wedge. Although it is convenient in this case to define them
right below the place they are used, it doesn't matter. In particular, they don't need to be defined prior to
their invocation within SSS. When the input file is scanned for macro definitions, all of the definitions are
extracted and saved; all are available at any point during the macro expansion process which follows.

These are both lowest-level macros; there are no macros invoked within these definitions. First, the drift
spaces between the wedges . . .

! SHORT STRAIGHT SECTION, VACUUM DRIFT SPACE
! DriftLength -- Length of the drift space (meters)

\Define SSS_Drift DriftLength
SREGION

! Length of region, number of radial subregions, step size (meters)
 %DriftLength 1 0.1

! Radial subregion: subregion #, inner radius, outer radius
 1 0.0 0.23

! Region-specific field and parameters
NONE
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

! Material tag (vacuum)
VAC

! Material geometry and parameters
CBLOCK
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

\End

And here are the wedges:

! SHORT STRAIGHT SECTION, WEDGE ABSORBERS
! WedgeAngle -- Azimuthal angle of the wedge (degrees, 0-360)

\Define SSS_Wedge WedgeAngle
SREGION

! Length of region, number of radial subregions, step size (meters)
 n.nn 1 0.01

! Radial subregion: subregion #, inner radius, outer radius
 1 0.0 0.23

! Region-specific field and parameters
NONE
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

! Material tag = Lithium Hydride
LIH

! Material geometry and parameters (ICOOL manual, p. 68)
WEDGE
 n.nn n.nn n.nn n.nn n.nn n.nn 0. 0. 0. 0.

\end

The Long Straight Section is defined in a similar manner. In some ways, it is even simpler. The LSS
contains three regions -- two identical accelerating cavities and one liquid hydrogen absorber. Moreover, at
the moment, all accelerating cavitiues in the entire ring are identical. (This may well change in the future,
for example to tune the phases, but we'll make sure it's easy to modify the file when the need arises.) All
absorbers in the entire ring are also identical. The only difference between one LSS and another is the
direction of the solenoidal magnetic field, so for now there is only a single parameter -- the field definition
file number.

! LONG STRAIGHT SECTION
! FieldFile: file number of magnetic field specification (30 or 32)
!
! Example: \LSS 30

\Define LSS FieldFile

! The Long Straight Section is a cell
CELL

! Cell repeat count = 1
1

! Cell field flip flag = false (don't care)
F

! Cell field type (solenoid surrounding the entire cell)
BLOCK
! Field Model, File# of field definition file
 2 %FieldFile 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

! The first region of the cell is an accelerating cavity. We will define it within a
! lower level macro because there will be a second one, identical or nearly so,
! later in the LSS.
\LSS_Cavity

! The second region of the cell is a liquid hydrogen absorber. We will specify it
! right here since we anticipate that every such absorber in the whole ring will
! be identical.

SREGION

! Length of region, number of radial subregions, step size (meters)
 n.nn 1 0.01

! Radial subregion: subregion #, inner radius, outer radius
 1 0.0 0.74

! Region-specific field and parameters
NONE
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

! Material tag = Liquid Hydrogen
LH

! Material geometry and parameters
CBLOCK
 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

! The third region of the cell is an accelerating cavity.
\LSS_Cavity

\End

We still have to define the accelerating cavity. For now it has no parameters, but it may easily be given
some as needed later.

! ACCELERATING CAVITY
! No parameters
! Example: \AccelCav

\Define AccelCav

SREGION

 <etc. etc. etc.>

\End

We're almost done with components for the entire ring. The only other component we need to worry about
right now is the 45-degree bending dipole. I suspect that eventually there is going to be a background field
associated with dipoles here that will motivate having two or even four subspecies of dipoles, but we'll l et
that be for now.

! 45 DEGREE BENDING DIPOLE
! For now, no parameters
! Example: \Dipole

\Define Dipole

SREGION

 <etc. etc. etc.>

\End

We have defined all the basic components; it remains only to put them together. The minimum almost-
repeatable unit of the ring is the quarter turn. There must be provision for flipping the solenoid field of both
the LSS and the SSS, and changing the azimuthal angle of the wedges in the SSS. Starting with a long
straight section:

\Define QuarterTurn LSSField SSSField WedgeAngle

! Long Straight Section
\LSS %LSSField

! A 45 degree bending dipole
\DIPOLE

! Short Straight Section
\SSS %SSSField % WedgeAngle

! A 45 degree bending dipole
\DIPOLE

\End

A half-turn is made up of two similar but not identical quarter turns:

\Define HalfTurn

! Quarter turn with LSS field 30, SSS field 31, Wedge angle 225 degrees
\QuarterTurn 30 31 225.

! Quarter turn with LSS field 32, SSS field 33, Wedge angle 315 degrees
\QuarterTurn 32 33 315.

\End

Next, a few convenience macros for running particles once around the whole ring, five times around, etc.

! Propagate particles around one full turn of the ring.
\Define FullTurn
\HalfTurn
\HalfTurn
\End

! Propagate particles five times around the ring.
\Define FiveTurns
\FullTurn
\FullTurn
\FullTurn
\FullTurn
\FullTurn
\End

For sending particles around the ring ten times, the following will generate the for001.dat file. Note the
\file command. It says "after you have stripped comments and blank lines, removed macro definitions, and
expanded all the macros at all l evels, then take what's between here and the next \file command (or the end
of the file) and write it into a file named for001.dat.

\File for001.dat

! Document the control variables . . .
$cont <a few control variables> $

! Document the beam generation specification
$bmt <a few beam definition variables> $

! Document the interaction model specification
$ints <define interaction model> $

$nhs <define histograms> $
 <define scatter plots, z-histories, r-histories, emittance calculations, etc.>

! Apparatus Specification
SECTION
\FiveTurns
\FiveTurns
ENDSECTION

However, we have four additional files which must be prepared. All four are short magnetic-field
definition files, which generate straight-section solenoid fields using current blocks. There are two LSS
fields (files 30 and 32) and two SSS fields (files 31 and 33) which are (at the moment) trivial modifications
of each other; the difference is characterized by a single number, either +1 or -1.

We need two macros to generate the fields:

\Define LSS_Field FieldSign

 < text to define a current-block field with %FieldSign determining the field direction>

\End

\Define SSS_Field FieldSign

 < text to define a current-block field with %FieldSign determining the field direction>

\End

Then to produce the four magnetic field definition files, we specify:

\File for030.dat
\LSS_Field 1.

\File for032.dat
\LSS_Field -1.

\File for031.dat
\SSS_Field 1.

\File for033.dat
\SSS_Field -1.

General Description of XICOOL

XICOOL accepts a single user input file. It strips comments and blank lines from the file, expands multiple
levels of text macros, and generates one or more output files ready for use as input to ICOOL.

In Unix/Linux, XICOOL is invoked by the following command line: xicool <inputfilename>. No user
interaction is expected. A diagnostic file is prepared, but normally it is not necessary to examine it.

The Major Processing Steps

1. Read the user-specified input file and strip out comments (all l ines whose first non-blank character is !)
and all blank lines. The stripped output file becomes the input to the next step.

2. Read the comment-and-blank-line-stripped input file and extract the macro definitions. Build data
structures in memory that preserve the macro definitions, but strip the definitions from the output file. The
output file, now stripped of comment lines, blank lines and macro definitions, becomes the input to the next
step.

3. Read the input file produced in step 2, and copy it l ine-by-line into the output file. Whenever a macro
invocation is found in the input file, use the macro definitions stored in memory to replace the invocation
line with the specified text, substituting values for macro parameters as required. If a macro definition
includes a macro invocation [4], just move that line into the output file just as you would for ordinary text,
but keep a count the number of macro invocation lines copied. The output file becomes the input file for the
next step. If the number of macro invocations copied into the output file is zero, go to step 4. Otherwise
repeat step 3.

4. As specified by the \File commands, write the segments of the stripped, macro-expanded input file into
the specified output files. Close all the files and exit.

The \File directive

\File filename

Once stripping and expanding have been completed, put everything from the \file statement to the next \file
statement (or end-of-file) into a file with the specified name, overwriting anything that is already in a file
by that name. For ICOOL, typical filenames are for001.dat, for030.dat, etc.

I hope it's clear that one should not name a macro "File", nor should one name an output file so as to
overwrite the input file or anything else you aren't prepared to lose. My file convention is to regard the
ICOOL for0xx.dat files as temporary files, and to store the apparatus configuration data in XICOOL input
files with more mnemonic names, e.g. BalbekovWedgeRotationTest03.

The \Define directive and the \End directive -- Part 1

\Define MacroName ParamName1 ParamName2 . . .

\End

Defines a macro -- text which replaces an input line invoking the macro. A macro may have 0-16
parameters. If a component appears at several places within the apparatus, without any modification, a no-

parameter macro will suffice. If minor variants of a component appear at several places within the
apparatus, then a parameterized macro will be useful; the parameters are used to characterize the variants.

Every \Define directive must be followed by an \End directive. The intervening lines specify the text to be
used to replace the macro invocation line whenever it occurs.

When a macro is invoked, values must be specified for the parameters. The macro definition may include
zero or more substitution markers for each parameter. During macro expansion, the value of each
substitution marker is replaced by the parameter's value. A substitution marker for a parameter consists of
% followed immediately (no space) by the parameter's name.

Example (noteworthy items highlighted):

\Define Absorber Length Material
SREGION

! Length as specified; 1 radial subregion; 1 cm stepsize
%Length 1 0.01

! Radial region #1; inner radius 0 meters; outer radius 0.70 meters
1 0.00 0.70

! No region-specific field
NONE
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

! Material as specified
%Material

!Material geometry is a simple cylindrical block
CBLOCK
0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

\End

Invocation of a Macro

\MacroName ParamValue1 ParamValue2 . . .

For the absorber macro defined above - -

To invoke an absorber with 1.2 meters of liquid hydrogen:
\Absorber 1.2 LH

To invoke an absorber with 14 cm of li thium hydride:
\Absorber 0.14 LIH

A macro invocation consists of a line of text. It begins with \ in column 1 followed immediately by the
name of the macro. Following that are the values of the parameters, in the same order they appear in the
macro definition. Default values for parameters (and omission of explicit values assigned to each
parameter) are not permitted. [3]

The \Define directive and the \End directive -- Part 2

Macro definitions may (and often do) include only ordinary text with or without parameter substitution.
Such macros are known as lowest-level macros.

However, macro definitions may also include macro invocation lines. Expansion of the macro now being
defined can trigger expansion of other macros, which can trigger expansion of yet other macros . . . until
the chain of expansions finally ends (hopefully!) in lowest-level macros. The real power of XICOOL lies in
its abili ty to map multi-level apparatus hierarchies into multi -level macro expansions. The Balbekov Ring
example above contains many instances.

However, when multi-level macros are expanded, one must decide how to handle parameter passing.
Within a given macro, parameters for nested macro invocations may be either constants (4.567 or LIH) or
may be substitution markers for the upper-level macro's own parameters. The latter permits a macro to
accept a parameter value and pass it on to any macros that it invokes.

Suppose that the Long Straight section (LSS) cell contains an absorber, and that the LSS cell i tself is
specified by a macro named LSS. Then LSS can invoke the absorber with constant parameters:

\Define LSS

\Absorber 1.2 LH

\End

But suppose there were two different kinds of Long Straight Section with different absorber lengths (but
always liquid hydrogen). Then one could define LSS with an absorber length parameter, and pass its value
to the Absorber macro it invokes:

\Define LSS AbsorberLength

\Absorber %AbsorberLength LH

\End

Then \LSS 1.2 would specify a Long Straight Section that includes a 1.2 meter long absorber, while
\LSS 0.8 would specify a Long Straight Section with a shorter absorber.

SomeBasic Principles for a Good XICOOL Data File

If a significant block of text (more than a line or two) will appear at two or more places in the output file,
especially if there is any prospect that the block of text will be changed in the future, make a macro of it.

If minor variants of a significant block of text will appear in the output file, make parameters of the variant
portions and define the whole block as a parameterized macro.

Try to set up the file in such a way that a design change that involves altering one operating parameter
requires that parameter to be edited at only one place in the text.

Make macro names and parameter names as mnemonic as reasonably possible.

Don't worry about execution time; input file preparation will always be negligible compared to any
significant simulation task.

Comment exhaustively, and at every level. Explain what apparatus each macro represents and what design
variable each parameter represents, including units.

Strategies

Given a problem, how do you get started? There are several strategies that will probably work well. I
would start with the apparatus definition section. One choice is to begin at the top with one or a very few
high-level macros that specify the entire apparatus, and then work your way down, filling in the details at
each step as you go. Another choice is to start at the bottom, writing detailed implementations of each type
of elementary component, and then building them into more complex subsystems.

The apparatus definition goes into for001.dat, so start a \file section for it and insert the apparatus
specification into it. For now, don't worry about all the stuff that goes at the beginning of for001.dat. When
you're far enough into the apparatus specification to do so, make a list of all the auxili ary files that you'll
need, and create \file specifications for them. It is natural to work on the details of the apparatus definition
and the auxiliary files together. When that's all done, then look after the control variables, the beam
generation, the histogram definitions etc. Remember that although XICOOL macros were really made for
apparatus definitions, they will do just as well for groups of similar histogram definitions, etc.

However you proceed, test often. Put in dummy component output lines and check the XICOOL output
files. For small modifications to an established and tested configuration, you won't need to do much
checking. At the moment XICOOL is not very forthcoming with error information, and when troubles
appear it's just as well not to have 200 lines of changes to examine.

Notes:

[1] In a classic case of convergent evolution, I was putting the finishing touches on this XICOOL writeup
when I received e-mail announcing Willi am Fawley's NIME. NIME and XICOOL don't do exactly the
same things, and their implementations are quite different, but they address many of the same basic needs.
XICOOL was originally written to stand between OPTICOOL and ICOOL. OPTICOOL generates
apparatus configurations without human interactivity, so XICOOL must be non-interactive as well .
XICOOL would normally be called as a subroutine within OPTICOOL (though the version described here
is a stand-alone program); hence it was most natural to write it in g77 Fortran, the same as OPTICOOL and
our version of ICOOL (a trivial modification of ICOOL for Windows).

[2] I strongly discourage editing the XICOOL output files (the ICOOL input files) directly, just as I would
discourage anyone from modifying the executable of a compiled program rather than changing the source
code and recompili ng. By doing so, one sacrifices the documentary value of the XICOOL input file.
Expanding even a very large XICOOL input file takes a small fraction of a second, so there is little reason
to change the output files by any means other than changing the input file. However, for learning XICOOL
and for checking your work, examining the XICOOL output files is never a bad idea.

[3] I have a strong personal antipathy to default values for parameters; some of my hardest-to-find blunders
have involved defaulted parameters where I either misremembered the default value or forgot to override a
default. Of course opinions may vary, but in XICOOL defaults are not allowed; every parameter must be
given an explicit value.

[4] A macro definition can include macro definitions, to any level. (It may be well to impose a cutoff just to
avoid catastrophe if the user accidentally calls for a macro to be expanded within its own definition, or
specifies a circular expansion.)

! Don't let this self-call ing macro definition expand forever.

\define SelfCalled
- - - - - - - -
- - - - - - - -
\SelfCalled
- - - - - - - -
- - - - - - - -
\end

\SelfCalled

! Don't let this circular macro expansion expand forever either.

\define A
- - - - - - - -
- - - - - - - -
\B
- - - - - - - -
- - - - - - - -
\end

\define B
- - - - - - - -
- - - - - - - -
\A
- - - - - - - -
- - - - - - - -
\end

\A

In the end, of course, it should be the case that every multi-level macro expansion ends up expressed in
terms of lowest-level macros -- those that produce pure text and call for no additional macro expansions.

